Antler regrowth as a form of epimorphic regeneration in vertebrates - a comparative view.
نویسندگان
چکیده
The annual regrowth of deer antlers is a unique case of extensive appendage regeneration in mammals. This review compares basic aspects of antler regeneration with epimorphic regeneration in other vertebrate taxa. The mesenchymal cells that build up the regenerating antler are not derived from dedifferentiated cells in the pedicle stump, but from the proliferation of cells of the pedicle periosteum; and based on different lines of evidence it has more recently been suggested that the pedicle periosteum contains stem cells that are periodically activated to produce a new antler. This constitutes a difference to urodele limb regeneration, where the blastema is (largely) formed from dedifferentiated cells. Antler regeneration involves healing of the large casting wound with no or only minor scarring, making the antler an interesting model for the control of scarring in mammals. Contrary to urodele limb regeneration, antler regrowth does not depend on a functional nerve supply. In our view, a comparative analysis of different regeneration phenomena, including antler regeneration, probably offers the best chance for achieving significant progress in regenerative medicine.
منابع مشابه
Deer antlers - a model of mammalian appendage regeneration: an extensive review.
BACKGROUND compared with other vertebrate taxa, mammals possess a very limited capacity for appendage regeneration. The antlers of deer are an exception in that they are periodically lost and fully regenerated throughout the life of an individual. OBJECTIVE in this paper we compare certain aspects of antler regeneration with regenerative processes in other vertebrates. METHODS review of the...
متن کاملGene Expression of Axon Growth Promoting Factors in the Deer Antler
The annual regeneration cycle of deer (Cervidae, Artiodactyla) antlers represents a unique model of epimorphic regeneration and rapid growth in adult mammals. Regenerating antlers are innervated by trigeminal sensory axons growing through the velvet, the modified form of skin that envelopes the antler, at elongation velocities that reach one centimetre per day in the common deer (Cervus elaphus...
متن کاملComparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.
Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas othe...
متن کاملEffects of p21 Gene Down-Regulation through RNAi on Antler Stem Cells In Vitro
Cell cycle is an integral part of cell proliferation, and consists mainly of four phases, G1, S, G2 and M. The p21 protein, a cyclin dependent kinase inhibitor, plays a key role in regulating cell cyclevia G1 phase control. Cells capable of epimorphic regeneration have G2/M accumulation as their distinctive feature, whilst the majority of somatic cells rest at G1 phase. To investigate the role ...
متن کاملThe regenerating antler blastema: the derivative of stem cells resident in a pedicle stump.
Antlers of the deer are the only mammalian organs that can fully grow back once lost from their pedicles, hence offer the only opportunity to learn how nature has bestowed mammalian epimorphic regeneration. Investigations have demonstrated that it is the proliferation and differentiation of pedicle periosteal cells (PPCs), but not dedifferentiation of the local differentiated cells, that give r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience
دوره 4 شماره
صفحات -
تاریخ انتشار 2012